1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
use std::{ cmp, fmt };
use crate::math::{
linear::{ Vector },
stats::{ mean, std_dev }
};
#[derive(Clone, Debug)]
pub struct Instance {
feature_vec: Vector
}
impl Instance {
pub fn new(instances: Vec<f32>) -> Self {
Self {
feature_vec: Vector::new(instances)
}
}
pub fn from_vector(feature_vec: Vector) -> Self {
Self { feature_vec }
}
pub fn normalize(&mut self) {
let mean = mean(&self.feature_vec);
let mean_vec = Vector::new(vec![mean; self.feature_vec.dim()]);
let std_dev = std_dev(&self.feature_vec);
let normalized_vec = (1_f32 / std_dev) * &(&self.feature_vec - &mean_vec);
self.feature_vec = normalized_vec;
}
pub fn distance(lhs1: &Instance, lhs2: &Instance, p: f32) -> f32 {
(&lhs1.feature_vec - &lhs2.feature_vec).p_norm(p)
}
}
impl cmp::PartialEq for Instance {
fn eq(&self, other: &Self) -> bool {
self.feature_vec == other.feature_vec
}
}
impl fmt::Display for Instance {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.feature_vec.fmt(f)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_normalize_instance() {
let features =
vec![9_f32, 5_f32, 8_f32, 3_f32, 4_f32, 0_f32,
3_f32, 8_f32, 1_f32, 2_f32, 3_f32, 1_f32];
let n: f32 = features.len() as f32;
let mean: f32 = features.iter().sum::<f32>() / n;
let mut variance = 0_f32;
for feat in features.iter() {
variance += (feat - mean).powi(2);
}
variance /= n - 1_f32;
let std_dev = variance.sqrt();
let mean_vec = Vector::new(vec![mean; features.len()]);
let mut x = Instance::new(features);
let expected
= Instance::from_vector((1_f32 / std_dev) * &(&x.feature_vec - &mean_vec));
x.normalize();
assert_eq!(x, expected);
}
}